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We have earlier proposed a scheme, named physics projection, for artificial intelligence systems to make sequential
decisions in physical environments. In this paper, we present a novel physical planning method in physics projection
for robots. It has two original features: 1) online uncertainty reduction and 2) adaptive model predictive control.
In the method, an adaptively learned physical world model is used as the predictor of the action effects in the
physical world. The results of the preliminary experiments using a physics simulator are shown.

1. Introduction

Physical planning is at the core of human intel-

ligence. Physical planning has long been stud-

ied in the broad fields of science and technology

[Craik 63, Polanyi 66, Winograd 72, Gibson 79, Brooks 91,

Spelke 07, Battaglia 13, Lake 17, Kunze 17, Watters 17,

Northoff 18, Toussaint 18, Kloss 18, Sünderhauf 18,

Janner 19, Bakhtin 19]. Physics projection (Fig. 1) was

proposed by Iwahashi [Iwahashi 19] as a way for artificial

intelligence systems to make sequential decisions in physical

environments, and is characterized as

• Online learning of physical world model,

• Dynamic planning by simulation,

• Embodiment.

These characteristics are the same as those of human phys-

ical planning abilities, but they have not been fully imple-

mented in artificial intelligence systems thus far. In this

paper, we present a physical planning method that can be

executed in physics projection.

Figure 1: Physics Projection

2. Proposed Physical Planning Method

In general, physical planning is sequential decision-

making, in which subsequent actions often depend on the
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Table 1: Notation used in Algorithm 1

ω plan

u action

x state of the world

Ω set of plans

G(ω) present value of ω

H(ω) expected future value of ω

p(x|ω, u) probability that x occurs after u following ω

effects of actions that precede them [Lyu 19]. We have to

consider that actions can change the physical world. Con-

sidering such characteristics, we propose a novel physical

planning method that has the following original features:

Online uncertainty reduction In the physical planning

problem, two kinds of uncertainties have to be man-

aged. One is uncertainty due to lack of observation,

and the other is uncertainty due to unpredictability in

the physical world. Both kinds of uncertainties are re-

duced during action control and planning by the robot’
s actual and simulated active observations in the phys-

ical world and physical world model, respectively.

Adaptive model predictive control The scheme of

adaptive model predictive control (e.g. [Lu 19]) is

adopted. The optimality of plans is estimated in the

prediction horizon based on the physical world model,

which is learned or adapted in an action control

feedback loop to reduce its uncertainty.

The algorithm of our physical planning method is pre-

sented in Algorithm. 1. Table 1 shows the notations

used in the algorithm description. The physical world

model provides the action-effect predictor p(x|ω, u). We

can use any physical world model that is manually devel-

oped (e.g. Unity) or one that is learned by deep learning

[Janner 19, Bakhtin 19].

3. Experiments

We implemented the proposed physical planning method

using the physical world simulator Unity, which is composed

of a graphics engine, physics engine, and fluid simulator.

Although the physical planning method should be run in
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Algorithm 1 Physical planning in physics projection

Input: Physical world, an executable action set, initial

physical world model, initial status x0, goal condition

GC

Output: Action sequence executed by a robot, ω̂, that sat-

isfies GC

Initialisation : ω̂ = ((ϕ, x̂0))

LOOP Process

1: while ω̂ does not satisfy GC do

2: ω0 ← ω̂, Ω = {ω0}, G(ω0) = 0.0

Prediction by the physical world model

3: while ωi does not satisfy GC for all ωi ∈ Ω do

4: Get p(x′
i,j,k|ωi, ui,j) for all following possible state

x′
i,j,k after action ui,j following plan ωi

5: î, ĵ = argmaxi,j

∑
k

{
p(x′

i,j,k|ωi, ui,j)

×(G(ωi + (ui,j , x
′
i,j,k) +H(ωi + (ui,j , x

′
i,j,k))

}
for all ωi ∈ Ω and possible action ui,j

6: for all x′
î,ĵ,k

do

7: ω|Ω| = ωî + (uĵ , x
′
î,ĵ,k

)

8: Add ω|Ω| to Ω

9: end for

10: end while

Actual action execution in the physical world

11: Execute the first action that is not executed, u, in ω

(∈ Ω) satisfies GC, and get the next actual state x

12: Observe the physical world

13: ω̂ ← ω + (u, x)

Adaptation of the physical world model

14: Compare the predicted and actual effects of action u

15: Renew the physical world model

16: end while

17: return ω̂

a real physical world, it was run under a simulated physi-

cal world build with Unity. The physical world model was

also represented by Unity, and learned incrementally from

the simulated physical world using yolo object recognition

(Fig. 2).

Two simple tasks, find-and-carry and move-and-grab,

were conducted using the physical planning method.

3.1 Find-and-carry
The goal condition is for the robot to find a mobile phone

in a room located in the house and carry it to the user. It

is assumed that the robot is aware of the probability of the

mobile phone being in a particular room, and the position

of the user. The execution process of the planning method

is shown in Fig. 3. The robot prepared an optimal plan in

the physical world model before it began to move. In the

left figure, the robot moved to the room it planned to visit

first, found the mobile phone, and carried it to the user in

the physical world. In the right figure, the robot moved to

the room it planned to visit first, but did not find the mobile

phone. Then, the robot adapted the physical world model

and prepared an optimal plan with the adapted physical

Figure 2: Representation of embodied physical world

model. The objects that were recognized and not recog-

nized in the physical world were represented by the adapted

categorical objects and cubes, respectively, in the physical

world model, which included a self body.

Figure 3: Physical planning for find-and-carry task.

world model. Then, the robot moved to the room it planned

to visit next, where it found the mobile phone and carried

it to the user in the physical world.

3.2 Move-and-grab
The goal condition is for the robot to raise the toy with-

out spilling a glass of wine placed next to the toy. The ex-

ecution process of the planning method is shown in Fig. 4.

The optimal plan was prepared before the robot proceeded

with the activity. The top figure shows the case where the

method could devise a plan that satisfied the goal condi-

tion. At time t, the robot attempted to grab a toy rabbit

from the front and spilled a wine glass in the physical world

model. At time t+1, the robot moved to the side, observed

the side of the toy in the physical world, and adapted the

physical world model. At time t + 2, the robot grabbed a

toy successfully in the physical world model in the physical

world model. This is an optimal plan. The bottom figure

shows the case where the method could not devise a plan

that satisfied the goal condition. At time t, the robot at-

tempted to grab a toy dog from the front, and spilled a wine

glass in the physical world model. At time t+ 1, the robot

moved to the side in the physical world, observed the side

of the toy in the physical world, and adapted the physical

world model. At time t + 2, the robot attempted to grab

the toy but could not grab it owing to its width, and spilled

the wine glass in the physical world model. Thus, the plan

that satisfies the goal condition was not devised.
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Figure 4: Physical planning for move-and-grab task. Top:

The method could devise a plan that satisfied the goal con-

dition. Bottom: The method could not devise a plan that

satisfied the goal condition.

4. Conclusion

It was confirmed that the process of interaction between

the physical world and the physical world model in the

proposed physical planning method was successfully imple-

mented. We need to investigate the search efficiency of the

method in the future.

The proposed method is generic and can be applied to any

physical task performed by robots. In addition, it can be

integrated with model-based reinforcement learning to cope

with environment shift problems in reinforcement learning.
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